

Electron/Photon identification in ATLAS and CMS

Claude Charlot LLR-École Polytechnique, Palaiseau, IN2P3/CNRS

for CMS and ATLAS collaborations

Outline

- o Physics motivation
- o ATLAS and CMS detectors @LHC
- o In situ calibration procedures
- o Energy estimation
- o Electron tracking
- o Material budget effects
- o e/jet and γ/π^0 separation
- o Soft electrons

Physics motivations

- o Higgs search
 - ο Η--γγ
 - o H→ZZ(*) →4e
- o BSM
 - o TeV resonances
 - o Also SUSY

o Leptonic decays of charginos and neutralinos

- o Many SM processes, top, Z→ee, W→eν
 - o Backgrounds to new signals
 - o Calibration processes

The CMS Detector

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

CMS PbWO4 Calorimetry

C. Charlot, HCP2006, Electron and photon ID at

0 114

118

120

122

124

Energy (GeV)

126

The ATLAS Detector

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

ATLAS LAr calorimetry

Intercalibration: phi symmetry

- o Startup scenario: use single jet triggers
 - o Previous study using min. bias events
 - o Jets closer to the relevant energy scales
- o Reach 2-3% depending on eta
 - In only few hours assuming full trigger bandwidth allocated to phi symmetry calibration
- o To be complemented by a method to intercalibrate the phi rings
 - o e.g. Z→ee
 - o Which therefore needs to run on less regions
- o Limited by the tracker material non uniformity in φ

Intercalibration: Z→ee

- Intercalibration of regions at start up using kinematical constraint
- Select low radiating electron pairs
 - o Main difficulty
 - o Efficiency of 5.6% for goldengolden Z's
- o 0.6% after 2fb⁻¹ (CMS)
 - o Starting from a mis-calibration between rings of 2% and within rings of 4%
 - o As result of lab measurements and phi symmetry

Intercalibration: W→ev

- o Intercalibrate in small regions
 - o use peak of E/p to intercalibrate the regions
- Going from electron to photon will require MC

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

Cluster energy corrections

0.1%-0.2% spread from 10GeV to 1TeV over all eta!

Testbeam: Achieved better than 0.1 % over 20-180 GeV:

- done in one η position in a setup with less material than in ATLAS and no B field -No Presampler for $\eta > 1.8$

$$E^{rec} = \underbrace{(a(E) + b(E).E_{PS}^{Vis})}_{\text{E loss upstream of PS}} + \underbrace{c(E)(E_{PS}^{Vis}.E_1^{vis})^{0.5}}_{\text{E loss}} + \underbrace{d(E).\sum_{i=1,3} E_i^{calo}}_{\text{calo sampling}} \underbrace{(1 + f_{leak}(depth))}_{\text{Longitudinal leakage}} + \underbrace{(D_{leak}(depth))}_{\text{E loss}} + \underbrace{$$

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

Cluster corrections

$$E_{corr} = E_{sc} . F(N_{cry}) . f(\eta)$$

$$E_{endcaps} = E_{presh} + E_{corr}$$

Algorithmic corrections ultimately tuned on Z→ee data

- o F(N_{cry}): containment, ECAL only correction
- o $f(\eta)$: energy lost, residual η dependence, depending on track-cluster patterns (e classes)

ECAL driven reconstruction

- Electrons and photons starts with clusters in the ECAL
- o For electrons, associate the cluster with a track
- Pixel match in CMS
 - o Same algo for offline and HLT
- o Low p_T algo starts with tracking

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

Electron tracking

- CMS in-out GSF electron tracking
 - o Energy loss for electrons is highly non gaussian
 - Bethe-Heitler energy loss modeled by several gaussians
 - o Use most probable value of the components pdf instead of mean
 - Meaningful momentum @ last point

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

E-scale corrections, e classes

- Different track-cluster patterns due to brem in tracker material
- E-scales corrections depend on classes
 - o « golden electrons »
 - o Good E/p and phi match
 - o Low brem fraction
 - o « big brem electrons »
 - o Good E/p match
 - o High brem fraction
 - o « narrow electrons »
 - o Good E/P match
 - o Intermediate brem fraction
 - o « showering electrons
 - o Bad E/Pmatch, brem clusters
- o Tuned using Z→ee data
 - o Still MC needed for low p_T region

Material from data

- Location from X-ray of the detector using conversions
- Amount from variables sensitive to material integral
 - o E/p distribution
 - o use brem fraction from GSF

e- tracks

$$<$$
X/X0> \sim -In(1-f_{brem})

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

Photon conversions

- ECAL driven inward seed/track finding
 - o Followed by outward seed/track finding
- Pairs of opposite-charge tracks fitted to common vertex
 - o Parameters refitted with vertex constraint
- Photon momentum from the tracks
 - o Determines the primary interaction vertex

Shower shape

LArEM beam test 2001-2002

Comparison between data and G4 standalone simulation

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

e-/jet separation using TRT

e/jet,γ/jet separation: isolation

- o Isolation is a very powerful tool to reject jet backgrounds
 - Track based isolation
 - Calorimeter isolation
 - Combined isolation

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

Electron identification

- Electromagnetic object from calo information
- o Track matching $(\Delta \eta, \Delta \phi)$, E/p
- Use of transition radiation (ATLAS)
- o Isolation
- o ID per class (CMS)
- Identification of conversions

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

π⁰/γ separation

Once isolation has been applied, only jet with little hadronic activity remains

Results from TB 2002 @50 GeV

Results from G4 full simulation

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

Electrons from b's

- Reconstruction of electrons close to jet is difficult
 - o Dedicated algorithm required
- o ATLAS low p_T algorithm:
 - o Build cluster around extrapolated track
 - o Calculate cluster properties
 - o pdf and neural net for ID
- o Performances on single tracks
- o Soft e-b-tagging efficiency
 - o ATLAS: 60% for R=150 (WH)
 - o CMS: 60-70% above 10 GeV miss rate ~1.5% (tt and QCD)

0.8

e- id efficiency

0.7

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

0.6

Summary

- Electron and photon ID are essential ingredients for new physics at LHC
- o In situ calibration procedures are established
- Material budget is a key issue
 - o Impact the reconstruction efficiency
 - o Degrades performances
- Isolation is a very powerful tool
- o Final ID using shape and match variables
- o Dedicated algorithms needed for e- from b's